Rabu, 10 April 2013

Aplikasi Sistem Informasi Geografis di Bidang Perairan dan Kelautan

Makalah Sistem Informasi Sumberdaya Perairan

APLIKASI SISTEM INFORMASI GEOGRAFIS DIBIDANG
PERAIRAN DAN KELAUTAN

Dosen Penanggung Jawab :
Rusdi Leonard, S.Pi, M.Si

Disusun Oleh :
TRI WORO WIDYASTUTI
110302052

                                                                                     



 





MANAJEMEN SUMBERDAYA PERAIRAN
FAKULTAS PERTANIAN
UNIVERSITAS SUMATERA UTARA
MEDAN
2013





PENDAHULUAN


Latar Belakang
Ikan dengan mobilitasnya yang tinggi akan lebih mudah dilacak disuatu area melalui teknologi ini karena ikan cenderung berkumpul pada kondisi lingkungan tertentu seperti adanya peristiwa upwelling, dinamika arus pusaran dan daerah front gradient pertemuan dua massa air yang berbeda baik itu salinitas, suhu atau klorofil-a. Pengetahuan dasar yang dipakai dalam melakukan pengkajian adalah mencari hubungan antara spesies ikan dan faktor lingkungan di sekelilingnya. Dari hasil analisa ini akan diperoleh indikator oseanografi yang cocok untuk ikan tertentu. Sebagai contoh ikan albacore tuna di laut utara Pasifik cenderung terkonsetrasi pada kisaran suhu 18.5-21.5oC dan berassosiasi dengan tingkat klorofil-a sekitar 0.3 mg m-3 (Polovia et al., 2001; Zainuddin et al., 2004, 2006).
     Selanjutnya output yang didapatkan dari indikator oseanografi yang bersesuaian dengan distribusi dan kelimpahan ikan dipetakan dengan teknologi SIG. Data indikator oseanografi yang cocok untuk ikan perlu diintegrasikan dengan berbagai layer pada SIG karena ikan sangat mungkin merespon bukan hanya pada satu parameter lingkungan saja, tapi berbagai parameter yang saling berkaitan. Dengan kombinasi SIG, inderaja dan data lapangan akan memberikan banyak informasi spasial misalnya dimana posisi ikan banyak tertangkap, berapa jaraknya antara fishing base dan fishing ground yang produktif serta kapan musim penangkapan ikan yang efektif. Tentu saja hal ini akan memberi gambaran solusi tentang pertanyaan nelayan kapan dan dimana bias mendapatkan banyak ikan.

Tujuan
            Tujuan dilakukannya pembuatan aplikasi SIG dalam bidang kelautan dan perikanan :
  • Mengetahui ikan di laut berada dan kapan bisa ditangkap
  • jumlah yang berlimpah merupakan pertanyaan yang sangat biasa didengar.
  • Meminimalisir usaha penangkapan dengan mencari daerah habitat ikan, disisi biaya BBM yang besar, waktu dan tenaga nelayan
  • mengetahui area dimana ikan bisa tertangkap dalam jumlah yang besar
Manfaat
            Salah satu alternatif yang menawarkan solusi terbaik adalah mengkombinasikan kemampuan SIG dan penginderaan jauh (inderaja) kelautan. Dengan teknologi inderaja faktor-faktor lingkungan laut yang mempengaruhi distribusi, migrasi dan kelimpahan ikan dapat diperoleh secara berkala, cepat dan dengan cakupan area yang luas.

















TINJAUAN PUSTAKA

Pengertian SIG
Sistem Informasi Geografis (SIG) adalah suatu komponen yang terdiri dari perangkat lunak, perangkat keras, data geografis dan sumberdaya manusia yang bekerja bersama secara efektif untuk menangkap, menyimpan, memperbaiki, memperbarui, mengelola, memanipulasi, mengintegrasikan, menganalisa, dan menampilkan data dalam suatu informasi berbasis geografis (Budiyanto, 2002).
              Sistem Informasi Geografi (SIG) adalah suatu sistem informasi yang dapat memadukan antara data grafis dengan data teks (atribut) objek yang dihubungkan secara geografis di bumi (georeference). Di samping itu, Sistem Informasi Geografi ini juga dapat menggabungkan data, mengatur data dan melakukan analisis data. Untuk selanjutnya menghasilkan output yang dapat dijadikan acuan dalam pengambilan keputusan pada masalah geografi. Sistem Informasi Geografi (SIG) merupakan terjemahan dari Geographical Information System (GIS).  Secara lebih spesifik Aronof mendefinisikan SIG sebagai suatu sistem yang berbasiskan komputer yang mempunyai kemampuan untuk menangani data yang bereferensi geografis yang mencakup :
a.Data input (pemasukan)
b.Manajemen data (penyimpanan dan pemanggilan data)
c.Analisis dan manipulasi data.(Aronof,1993)
              Definisi SIG selalu bertambah,berkurang, dan bervariasi. Hal ini karena SIG merupakan suatu bidang kajian ilmu dan teknologi yang relatif baru namun terlepas dari bervariasinya definisi SIG secara umum yang paling perlu diperhatikan adalah komponen-komponen yang disebutkan. Komponen Utama Sistem Informasi Geografis (SIG). Melihat SIG sebagai suatu sistem, maka SIG terdiri dari beberapa komponen-komponen penyusun. Komponen penyusun dalam SIG adalah: perangkat keras (hardware), perangkat lunak (software), organisasi (manajemen) dan pemakai (users). Kombinasi dari komponen-komponen tersebutlah yang akan menentukan kesuksesan pengembangan Sistem Informasi Geografis (SIG).
Kondisi Perairan dan Perikanan
            Dunia kelautan merupakan dunia yang sangat dinamis, disini hampir semunya bergerak kecuali dasar lautan. Di wilayah yang merupakan bagian bumi terbesar ini, terdapat banyak sumber daya alam yang bisa menghasilkan pendapatan yang tinggi untuk suatu daerah atau pemerintahan, contohnya adalah sumber daya ikan. Indonesia merupakan suatu negara yang sangat luas dan memiliki sumber daya perikanan yang sangat besar juga. Dengan luas lautan sekitar 5,8 juta km2 dan panjang pantai kurang lebih 81.000 km, maka potensi pendapatan ekonomi dari bidang perikanan akan sangat besar sekali. Menurut Kusyanto (2001) potensi sumber daya perikanan di Indonesia adalah 6.1 juta ton per tahun dan baru termanfaatkan sekitar 57%. Kurangnya pemanfaatan teknologi dalam eksploitasi sumber daya ikan2 tersebut menyebabkan tidak optimumnya pemanfaatan sumber daya ikan yang ada. Pemanfaatan suatu teknologi seperti Sistem Informasi Geografis untuk perikanan di harapkan dapat mampu memberikan suatu gambaran dan suatu tampilan spasial tentang sumber-sumber atau spot-spot perikanan di wilayah indonesia yaitu dengan menggabungkan faktor-faktor lingkungan yang mendukung tempat hidup dan berkumpulnya berbagai jenis ikan tersebut sehingga dapat dimanfaatkan untuk meningkatkan hasil penangkapan ikan.

Pemanfaatan SIG di Bidang Perikanan dan Kelautan
            Setiap jenis ikan mempunyai suatu kriteria-kriteria lingkungan tersendiri untuk kenyaman hidupnya, namanya juga mahluk hidup. Kriteria-kriteria lingkungan tersebut adalah seperti suhu, makanan (chlorophyl-a), salinitas, pertemuan masa air (eddy), upwelling, dll. Contohnya untuk ikan albacore tuna di laut utara pasifik, ikan ini suka hidup pada kisaran suhu 18.5 – 21.5 oC, dan tingkat klorofil-a 0.3 mg/m3 (Polovia et al., 2001; Zainuddin et al., 2004 dalam Zainuddin, 2006), sedangkan ikan cakalang dan tuna kecil (litle tuna) lebih bahagia hidup pada daerah dengan kisaran suhu 23 – 28 oC (Leavestu dan Hela, 1970 dalam Kusuma, 2004).
            SIG perikanan lebih sering bermain dengan bentuk data raster. Data2 SST, klorofil dll tersebut merupakan suatu data dari citra satelit yang berbentuk raster. Data raster mempunyai kelemahan dalam proses penyimpaan dan kemampuannya berinteraksi dengan data atribut. Data bentuk raster membutuhkan tempat penyimpanan yang sangat besar sehingga boros hardisk, data raster juga merupakan data angka per pixel sehingga tidak bisa di gabung dengan data tabel, keadaan ini terjadi apabila data raster tersebut bersifat degradasi. Untuk bisa menggabungkannya dengan data tabel harus di reklasifikasi terlebih dahulu, sehingga membentuk ID2. Interkasi data atribut dengan data spasial sangat berguna pada lokasi pendaratan ikan, dimana pelaporan secara berkala tentang hasil penagkapan ikan akan memberikan informasi wilayah penghasil ikan terbesar dan informasi tentang pemanfaatan potensi perikanan yang ada disekitar lokasi pendaratan kapal.
            Di bawah ini disajikan salah satu contoh aplikasi penggunaan SIG dan inderaja pada penangkapan ikan tuna di laut utara Pasific (Gambar 1).  Disini terlihat bahwa dua database (satelit dan perikanan tuna) dikombinasikan dalam mengembangkan spasial analysis daerah penangkapan ikan tuna. Pada prinsipnya ada 4 layer/lapisan data yang diintegrasikan yaitu suhu permukaan laut (SST) (NOAA/AVHRR), tingkat konsentrasi klorofil (SeaWiFS), perbedaan tinggi permukaan air laut (SSHA) dan eddy kinetik energi (EKE) (AVISO). Parameter pertama (SST) dipakai karena berhubungan dengan kesesuaian kondisi fisiologi ikan dan thermoregulasi untuk ikan tuna; sedangkan parameter yang kedua karena dapat menjelaskan tingkat produktifitas perairan yang berhubungan dengan kelimpahan makanan ikan; sementara parameter yang ketiga berhubungan dengan kondisi sirkulasi air daerah yang subur seperti eddy dan upwelling ; dan parameter terakhir berhubungan dengan indeks untuk melihat daerah subur dan kekuatan arus yang mungkin mempengaruhi distribusi ikan. Data penangkapan ikan tuna (lingkaran putih pada peta yang ditunjukkan dengan tanda panah) diplot pada peta lingkungan yang dibangkitkan dari citra satelit. Sedangkan panel atau layer yang paling atas menunjukkan peta prediksi hasil tangkapan.
            Gambar 1 memberi informasi bahwa ikan tuna tertangkap dalam jumlah yang besar (terkonsentrasi) pada posisi sekitar 35oLU dan 160oBT bersesuaian dengan kondisi SST sekitar 20oC dan berassosiasi dengan tingkat klorofil-a sekitar 0.3 mg m-3. Konsentrasi ikan tersebut berada pada posisi positif anomaly permukaan laut (warna merah) yang bertepatan dengan kondisi EKE yang relatif lebih tinggi. Dari Gambar itu terlihat bahwa prediksi hasil tangkapan dengan peluang yang tinggi (dikenal dengan istilah habitat hotspot) juga menkonfirmasi daerah produktif tersebut. Setiap spesies ikan mempunyai karakteristik oseanografi kesukaannya sendiri dan cenderung menempati daerah tertentu yang bisa dipelajari. Hal ini dapat diketahui dengan pendekatan SIG dan inderaja multi-layer tersebut.
 
 


Gambar 1. Aplikasi SIG dan inderaja dalam kegiatan penangkapan ikan tuna pada bulan November 2000 (resolusi semua layer citra = 9 Km) (Zainuddin, 2006).
            Contoh lain aplikasi SIG di selatan pulau Hokkaido, Jepang dapat dilihat pada Gambar 2 berikut ini. Peta ini menunjukkan berbagai informasi spasial yang bisa kita pahami tentang perikanan tangkap di sekitar pulau tersebut, khususnya perikanan cumi-cumi. Disni peta SIG menggambarkan dimana posisi pelabuhan perikanan (fishing port), jarak antara fishing ground (daerah penangkapan) dan pelabuhan, distribusi hasil tangkapan, jumlah kapal yang tersedia. Dari informasi ini dapat dilihat bahwa distribusi musiman daerah penangkapan, hasil tangkapan dan jumlah kapal penangkap akan menghasilkan informasi tentang jalur migrasi spesies cumi-cumi tersebut yaitu cenderung ke utara pada bulan Juni dan kembali ke selatan pada bulan November.

 
Gambar 2. Peta distribusi daerah penangkapan cumi-cumi dan jumlah kapal dan hasil tangkapannya di sekitar pulau Hokkaido, Jepang pada bulan Juni (kiri) dan November (kanan) (Kiyofuji and Saitoh, 2004).







PENUTUP

              Pengembangan SIG untuk kelautan mempunyai dua kendala umum, pertama bahwa dasar-dasar perkembangan SIG adalah untuk keperluan analisis keruangan pada suatu lahan (land-based sciences), kedua analisis SIG untuk laut lebih banyak menggunakan 3D, sedangkan SIG sendiri masih kurang mampu mengaplikasikan 3D secara baik pada daerah2 yg luas (Davis dan Davis 1988; Wright dan Goodchild 1997 dalam Kusuma, 2004).
              Keadaan2 lingkungan yang merupakan syarat kebahagian hidup bagi ikan2 tersebut merupakan suatu sebaran spasial yang dapat di olah dengan Sistem Informasi Geografi. Data-data lingkungan tersebut dapat di peroleh dari data penginderaan jauh seperti Sea Surface Temperature (SST)/suhu laut dan klorofil-a yang bisa diperoleh dari citra MODIS yang bias di download pada situ. sedangkan data-data lokasi pendaratan kapal penagkapan, batas pantai bisa diperoleh dari survei lapangan dan peta dasar wilayah. Sistem informasi geografi merupakan suatu interaksi antara data-data atribut dan data spasial yang bereferensi geografi. Keunggulan SIG ini dapat dijadikan masukan berharga bagi para nelayan atau pengusaha perikanan untuk mengetahuai lokasi-lokasi penangkapan ikan. Pertanyaan yang sering di lontarkan nelayan adalah dimana lokasi penangkapan  SIG akan memberikan tampilan secara geografis kencendrungan seberan dari faktor2 lingkungan yang disukai oleh ikan yang akhirnya memberikan gambaran daerah perkiraan penangkapan ikan.







   DAFTAR PUSTAKA

http://regional.coremap.or.id oleh : Dr. Ir. Mukti Zainuddin, MSc. Staf Pengajar     Fakultas Ilmu         Kelautan dan Perikanan Universitas Hasanuddin
Prahasta, E. 2005. Sistem Informasi Geografis, Konsep-Konsep Dasar. CV. Informatika, Bandung.
Puspita, Y. 2009. Penggunaan ArcView Giss 3.3 Pada Peranvangan Aplikasi Sistem Informasi Geografis Lokasi Sekolah di Wilayah Bogor. Universitas Gunadarma, Depok.
Siswanto. 2011. Sistem Informasi Geografis Objek Wisata Menggunakan Google Maps Api Studi Kasus Kabupaten Mojokerto. Institut Teknologi Sepuluh Nopember, Surabaya.
Zainuddin, M. 2010. Aplikasi SIG di Bidang Kelautan dan Perikanan. Universitas Hasanuddin, Makassar.